Designed & Manufactured by...

10 mA

30 mA

Passive

Active

In-line

Portable

Socket

Weatherproof

A Guide to RCDs & Electrical Safety

PowerBreaker...Anything else is a compromise
In 1975 GreenBrook used its expertise in the design and manufacture of relays to produce the very first Residual Current Device to be totally housed within a 13A plug.

The product was given the name "PowerBreaker" and its use quickly spread within business and to the home. Today many millions of PowerBreaker products are protecting lives.

Contents

What is an RCD? .. 3
Why do we need RCDs? 3
Why Choose PowerBreaker? 4 - 5
How does an RCD work? 6 - 7

Passive
RCD Unswitched Sockets - 30mA 8
RCD Switched Sockets 30mA 8 - 9
RCD Fused Spurs 30mA 10
RCD Switched Sockets 10mA 11
RCD Fused Spurs 10mA 12

Active
RCD Switched Sockets 30mA 13
RCD Fused Spurs 30mA 14
RCD Plugs and Adaptors 14
RCD In-Line .. 15
RCD Switched Sockets 10mA 16
RCD Fused Spurs 10mA 17
RCD Legislation and Codes of Practice 18 - 19
What is an RCD?

An RCD is a life-saving device that protects against dangerous electric shocks and reduces the risk of electrical fires. RCD stands for Residual Current Device. This is a sensitive switching device that quickly turns the electricity off when danger arises to reduce the risk of death or serious injury.

Why do we need RCDs?

Every year in the UK the Fire Brigade is called to over 10,000 incidents attributable to electrical faults. Half of these incidents are in the home and result in some 500 serious injuries and approximately twenty fatalities. Added to this, there are close to ten fatalities every year due directly to electric shocks; as well as a large number of serious injuries.

Residual Current Devices (RCDs) are electrical devices which when incorporated into an electrical installation, will provide the highest degree of protection against the risks of electrocution and fire caused by earth faults.

PowerBreaker Socket RCDs offer MFBL (Make First Break Last) technology, which is critical to avoid upstream RCD nuisance tripping at the consumer unit.

GreenBrook continues to develop high performance products for use in every situation, so that the name - PowerBreaker - remains eponymous with residual current devices and the protection of life.

Did you know....

- RCD is a generic term for all Residual Current Devices, which there are three types: Fixed, Portable and socket
- RCDs are available as both Active (Requires resetting after power failure) & Passive (Does not require resetting after power failure)
- Point of supply and point of use all need RCD protection
- BSEN standards require RCDs to trip within 40 milliseconds at 5 x rated trip current
- The new generation of RCD Sockets by PowerBreaker will trip in less than 20 milliseconds
- The 17th Edition recommends use of RCDs for sockets as well as consumer units and circuits
- IET Wiring Regulations 415.1, 411.3.3, 522.6.202 & 522.6.203, 701.411.3.3, cover applications for RCDs
- RCDs detect very low earth leakage current, as low as 10 or 30 milli amperes depending on the model

Interesting Safety Facts....

- 13 million homes (50%) in the UK still have no RCD protection at all
- Approximately 10% of all fires are caused by electrical faults
- Many of these incidents could be prevented by using RCDs

Always ensure that suppliers can back up claims with authentic certification - ask to see their test certificate.
### Features	Benefits	Specific to
Less than 20m/s typical trip speed | Added safety in event of hazard | Complete Range
Conforms to the latest EMC/low voltage directive | Fully compliant and acceptable by all specifying bodies and certifying authorities | Complete Range
High intensity LED power on indicator | Clear visual indicator of power on | Complete Range
Higher cosmetic standard of design | Less intrusive when installed | Complete Range
100% in-house tested | More reliable & dependable | Complete Range
- RoHS compliant
- Full certification | Full confidence in product quality | Complete Range
Captive terminal screws | Assists easy installation | Complete Range
Compact depth | Will fit into 25mm back box | Complete Range
Rated trip Current | 30mA | Switched Sockets & Spurs
Rated trip Current | 10mA - Super Sensitive | White Sockets
Higher cosmetic standard of design/Modern slim style | Modern appearance - blends in with existing standard sockets | Switched Sockets & Spurs
Double earth terminals | Assists easy installation | Twin Sockets & Spurs
Metalclad treated | Resists rust & corrosion - product stays smarter | Metal Sockets and Spur
Underside or rear entry for appliance cable | More versatile choices of appliance wiring | Metal Spur
Adjustable cable clamp in accordance with BS1363-4 | Safety clamps most cable sizes
Cable size 0.5mm² - 1.5mm²
Cable Dia 4.6 - 10.4mm | Spur
Recessed buttons | Prevents unintended operation | Spur

Passive RCDs - Typical Applications
- Household appliances such as refrigerators and freezers will return to their regular mode of operation as soon as the power supply resumes normal operation.

Active RCDs - Typical Applications
- Usually used for extension leads or outdoor equipment such as hedge trimmers, where unexpected restarting of equipment could present a danger to the user in a power cut situation.
Passive - 30mA

Mechanically latched - Does not require resetting after power failure.

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
<th>Switched/Unswitched</th>
<th>Passive 30mA</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>H22WPSAPN-C</td>
<td>Twin Socket</td>
<td>Unswitched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>H22MPAPN-C</td>
<td>Twin Socket</td>
<td>Unswitched</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
<tr>
<td>K21SPA</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K22SPA</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K21WPAPN-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K22WPAPN-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K21MPAPN-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
<tr>
<td>K22MPAPN-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
<tr>
<td>H92WPAPN-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>H92MPAPN-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
</tbody>
</table>

Super Sensitive - 10mA

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
<th>Switched/Unswitched</th>
<th>Passive 10mA</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>K21WPApn10-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K22WPApn10-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>K21MPApn10-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
<tr>
<td>K22MPApn10-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
<tr>
<td>H92WPApn10-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Passive</td>
<td>White</td>
</tr>
<tr>
<td>H92MPApn10-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Passive</td>
<td>Metalclad</td>
</tr>
</tbody>
</table>

Active - 30mA

Electrical latching - Requires resetting after power failure.

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
<th>Switched/Unswitched</th>
<th>Active 30mA</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>K21WFAAN-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>K22WFAAN-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>K21MPAAN-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
<tr>
<td>K22MPAAN-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
<tr>
<td>H92WFAAN-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>H92MPAAN-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
<tr>
<td>J72A-C</td>
<td>Plug</td>
<td>-</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>J02A-C</td>
<td>Adaptor</td>
<td>-</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>J62-T</td>
<td>IP65 In-Line</td>
<td>-</td>
<td>Active</td>
<td>Orange</td>
</tr>
<tr>
<td>J62-Y</td>
<td>IP65 In-Line/110V</td>
<td>-</td>
<td>Active</td>
<td>Yellow</td>
</tr>
</tbody>
</table>

Super Sensitive - 10mA

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
<th>Switched/Unswitched</th>
<th>Active 10mA</th>
<th>Finish</th>
</tr>
</thead>
<tbody>
<tr>
<td>K21WFAAN10-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>K22WFAAN10-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>K21MPAAN10-C</td>
<td>Single Socket</td>
<td>Switched</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
<tr>
<td>K22MPAAN10-C</td>
<td>Twin Socket</td>
<td>Switched</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
<tr>
<td>H92WFAAN10-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Active</td>
<td>White</td>
</tr>
<tr>
<td>H92MPAAN10-C</td>
<td>Fused Spur</td>
<td>-</td>
<td>Active</td>
<td>Metalclad</td>
</tr>
</tbody>
</table>
How does an RCD work?

Principle of RCD Operation

An RCD protects by constantly monitoring the current flowing in the live and neutral wires supplying a circuit or an individual item of equipment.

Under normal circumstances, the current flowing in the two wires is equal. When an earth leakage occurs due to a fault in the circuit or an accident with the equipment, an imbalance occurs and this is detected by the RCD, which automatically cuts off the power before injury or damage can result.

A Simple RCD Circuit Diagram

To be effective, the RCD must operate very quickly at a low earth leakage current. Those designed to protect human life are engineered to trip out with an earth leakage current of 30mA within 200mS and at a higher earth current of 150mA, they will trip in less than 40mS. These limits are well inside the safety zone, within which electrocution or fire would not be expected to occur.

PowerBreaker has a typical trip speed of less than 20mS.

Principle of Shock Protection

Protection of persons and livestock against electric shock is a fundamental principle in the design of electrical installations in accordance with BS 7671: Requirements for electrical installations, commonly known as The IET Wiring Regulations 17th Edition. Use of the correct earthing system is an essential part of this process.

The 17th Wiring Regulations highlights two main areas of protection -

1. **Basic Protection** - An electric shock may arise from direct contact with live parts, for example, when a person touches a live conductor that has become exposed as a result of damage to the insulation of an electric cable.

2. **Fault Protection** - An electric shock may arise from indirect contact, for example, a fault results in the exposed metalwork of an electrical appliance, or even other metalwork such as a sink or plumbing system becoming live.

RCDs, provide the first and most important line of defence. They provide protection against faults under certain installation conditions where fuses and MCBs cannot achieve the desired effect.

Fuses and MCBs provide no protection against the electric currents flowing to earth through the body.
The effects of an Electric Shock

The effects of electricity on the human body, whilst not always sufficient serious to cause death, can still have a long term adverse effect on a persons health and cause psychological effects. Perception of an electric shock can be different depending on the voltage, duration, current, path taken etc. An electric shock can also cause external burns due to resistance to current. Internal burns are caused by high voltage shocks from the source (>500V to 1000V). Neurological effects can also occur when current causes interference with nervous control, especially over the heart and lungs. Another serious effect of an electric shock is Ventricular Fibrillation. It can be induced when a current as low as 60mA travels through the chest for a fraction of a second. Fibrillations are usually lethal because all the heart muscle cells move independently. Above 200mA, the muscle contractions are so strong that the heart muscles cannot move at all.

Muscle spasms can occur and can cause a person to be unable to release from a current source; if there is sufficiently high current. The ‘let go’ current is the maximum current that can cause the flexor of the arm to contract but still allows a person to release their hand from the current source.

The table below refers to adult people in good health at the time of the shock, but if the victim is a child or person in poor health, the effects can be more serious and the need for RCD protection is even greater.

The degree of risk depends not only on current, but also on time - the higher the current or the longer the time of shock, the greater the danger. In considering a 230V 50Hz AC supply, the following effects of current are typically observed.

<table>
<thead>
<tr>
<th>Current</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 - 0.5mA</td>
<td>Generally this current is below the level of perception, resulting in no reaction.</td>
</tr>
<tr>
<td>0.5 - 5mA</td>
<td>Although no dangerous physiological effects, this current may produce a startle effect that results in injury due to falling etc.</td>
</tr>
<tr>
<td>5mA - 10mA</td>
<td>Some effect as above but in addition muscular reaction may cause inability to let go of equipment. Once current flow ceases letting go is then possible.</td>
</tr>
<tr>
<td>10mA - 40mA</td>
<td>Severe pain and shock as current value increases. At currents over 20mA the victim may experience breathing difficulties with asphyxia if current flow is uninterrupted. Reversible disturbance to heart rhythm and even cardiac arrest is possible at higher values of current and time.</td>
</tr>
<tr>
<td>40mA - 250mA</td>
<td>Severe shock and possibility of non-reversible disturbance to the normal cardiac cycle, referred to as Ventricular Fibrillation. The possibility of Ventricular Fibrillation increases as current and time increase. It is also possible to experience heavy burns at higher currents in addition to full cardiac arrest.</td>
</tr>
</tbody>
</table>
RCD Sockets - Unswitched 30mA

- Mechanically latched (does not need resetting after a power loss)
- High intensity LED power on indicator
- Twin earth terminals

Technical Data
- Voltage: 230V AC ~ 50Hz
- Max operating current: 13A (13A inductive)
- Rated trip current: 30mA
- Typical trip speed: Less than 20mS (typical)
- RCD contact break: Double pole
- Latching: Mechanical, no need to reset after power loss (Passive)
- Responsive to: Pulsating DC earth faults
- Conforms to: BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
</table>
| H22WPSAPN-C | RCD Twin Socket
 | Slim profile |
 | Scratch resistant |
 | Urea front plate |
 | Fits standard 25mm back box |

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
</table>
| H22MPAPN-C | RCD Twin Socket
 | Complete with metal backbox |

RCD Sockets - Switched Panel Mounting 30mA

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
</table>
| K21SPA | Panel Mounting RCD Single Switched Socket
 | Moulded front plate |
 | Max Plate Thickness 2mm |

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
</table>
| K22SPA | Panel Mounting RCD Twin Switched Socket
 | Moulded front plate |
 | Twin earth terminals |
 | Max Plate Thickness 2mm |
RCD Sockets - Switched 30mA
Passive

- Mechanically latched (does not need resetting after a power loss)
- High intensity LED power on indicator
- Individually switched socket outputs
- Twin sockets fitted with twin earth terminals

Technical Data

- Voltage: 230V AC ~ 50Hz
- Max operating current: 13A (13A inductive)
- Rated trip current: 30mA
- Typical trip speed: Less than 20mS (typical)
- RCD contact break: Double pole
- Latching: Mechanical, no need to reset after power loss (Passive)
- Responsive to: Pulsating DC earth faults
- Conforms to: BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3

Part No.	Description
K21WPAPN-C	RCD Single Switched Socket
Slim profile	
Moulded front plate	
Fits standard 25mm back box	

K22WPAPN-C | RCD Twin Switched Socket
| Slim profile
| Moulded front plate
| Fits standard 25mm back box

K21MPAPN-C | RCD Single Switched Socket
| Complete with metal backbox

K22MPAPN-C | RCD Twin Switched Socket
| Complete with metal backbox

‘Make first break last contact – prevents nuisance tripping further upstream’
RCD Fused Spurs - 30mA

- Mechanically latched (does not need resetting after a power loss)
- High intensity LED power on indicator, clear visual indicator of power on
- Mechanical flag trip indicator
- Integral cord outlet and cable clamp
- Fuse holder can be locked out for safety
- Twin earth terminals

Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230V AC ~ 50Hz</td>
</tr>
<tr>
<td>Max operating current</td>
<td>13A (13A inductive)</td>
</tr>
<tr>
<td>Rated trip current</td>
<td>30mA</td>
</tr>
<tr>
<td>Typical trip speed</td>
<td>Less than 20mS (typical)</td>
</tr>
<tr>
<td>RCD contact break</td>
<td>Double pole</td>
</tr>
<tr>
<td>Latching</td>
<td>Mechanical, no need to reset after power loss (Passive)</td>
</tr>
<tr>
<td>Responsive to</td>
<td>Pulsating DC earth faults</td>
</tr>
<tr>
<td>Conforms to</td>
<td>BS 1363-4:1995 Amd 1, 2, 3 and BS 7288:1990 Amd 1</td>
</tr>
</tbody>
</table>

Make first break last contact – prevents nuisance tripping further upstream

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H92WPAPN-C</td>
<td>RCD Fused Spur</td>
</tr>
<tr>
<td></td>
<td>Scratch resistant urea front plate</td>
</tr>
<tr>
<td></td>
<td>Fits 25mm standard back box</td>
</tr>
<tr>
<td>H92MPAPN-C</td>
<td>RCD Fused Spur</td>
</tr>
<tr>
<td></td>
<td>Complete with metal back box</td>
</tr>
</tbody>
</table>
RCD Sockets - Switched 10mA

Passive

- Mechanically latched (does not need resetting after a power loss)
- High intensity LED power on indicator
- Individually switched socket outputs
- Twin sockets fitted with twin earth terminals

Technical Data

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
</table>
| K21WPAPN10-C | RCD Single Switched Socket
Slip profile
Moulded front plate
Fits standard 25mm back box |
| K22WPAPN10-C | RCD Twin Switched Socket
Slip profile
Moulded front plate
Fits standard 25mm back box |
| K21MPAPN10-C | RCD Single Switched Socket
Complete with metal backbox |
| K22MPAPN10-C | RCD Twin Switched Socket
Complete with metal backbox |

'Super Sensitive - 10mA’

- Conforms to BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3
- Conforms to BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3
- Conforms to BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3
- Conforms to BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3
RCD Fused Spurs - 10mA Passive

- Mechanically latched (does not need resetting after a power loss)
- High intensity LED power on indicator, clear visual indicator of power on
- Mechanical flag trip indicator
- Integral cord outlet and cable clamp
- Fuse holder can be locked out for safety
- Twin earth terminals

Technical Data
- Voltage: 230V AC ~ 50Hz
- Max operating current: 13A (13A inductive)
- Rated trip current: 10mA
- Typical trip speed: Less than 20mS (typical)
- RCD contact break: Double pole
- Latching: Mechanical, no need to reset after power loss (Passive)
- Responsive to: Pulsating DC earth faults
- Conforms to: BS 1363-4:1995 Amd 1, 2, 3 and BS 7288:1990 Amd 1

Part No	Description
H92WPAPN10-C	RCD Fused Spur
Scratch resistant urea front plate	
Fits 25mm standard back box	

H92MPAPN10-C | RCD Fused Spur
| Complete with metal back box

'Make first break last contact – prevents nuisance tripping further upstream'

'Super Sensitive – 10mA'

10mA trip current RCD gives a high level of protection - An Ideal application for Schools, Nurserys, Hospitals & outdoor areas
RCD Sockets - Switched 30mA Active

- Electrical latching - Needs to be reset after power failure
- High intensity LED power on indicator
- Individually switched socket outputs
- Twin sockets fitted with twin earth terminals

Technical Data

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230V AC ~ 50Hz</td>
</tr>
<tr>
<td>Max operating current</td>
<td>13A (13A inductive)</td>
</tr>
<tr>
<td>Rated trip current</td>
<td>30mA</td>
</tr>
<tr>
<td>Typical trip speed</td>
<td>Less than 20mS (typical)</td>
</tr>
<tr>
<td>RCD contact break</td>
<td>Double pole</td>
</tr>
<tr>
<td>Latching</td>
<td>Electrical, needs to be reset after power failure (Active)</td>
</tr>
<tr>
<td>Responsive to</td>
<td>Pulsating DC earth faults</td>
</tr>
<tr>
<td>Conforms to</td>
<td>BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K21WPAAN-C</td>
<td>RCD Single Switched Socket</td>
</tr>
<tr>
<td></td>
<td>Slim profile</td>
</tr>
<tr>
<td></td>
<td>Moulded front plate</td>
</tr>
<tr>
<td></td>
<td>Fits standard 25mm back box</td>
</tr>
<tr>
<td>K22WPAAN-C</td>
<td>RCD Twin Switched Socket</td>
</tr>
<tr>
<td></td>
<td>Slim profile</td>
</tr>
<tr>
<td></td>
<td>Moulded front plate</td>
</tr>
<tr>
<td></td>
<td>Fits standard 25mm back box</td>
</tr>
<tr>
<td>K21MPAAN-C</td>
<td>RCD Single Switched Socket Complete with metal backbox</td>
</tr>
<tr>
<td>K22MPAAN-C</td>
<td>RCD Twin Switched Socket Complete with metal backbox</td>
</tr>
</tbody>
</table>

MARKET LEADER

+ Easy to install
+ Robust modern design
+ High intensity LED power on indicator
+ Cuts the power for added protection against electrocution
+ Electrical Latching - Needs to be reset after power failure (Active)

SAFETY RCD SOCKET

Protection for you and your family
RCD Fused Spurs - 30mA

- Electrical latching - Needs to be reset after power failure
- High intensity LED power on indicator, clear visual indicator of power on
- Mechanical flag trip indicator
- Integral cord outlet and cable clamp
- Fuse holder can be locked out for safety
- Twin earth terminals

Technical Data
- Voltage: 230V AC ~ 50Hz
- Max operating current: 13A (13A inductive)
- Rated trip current: 30mA
- Typical trip speed: Less than 20mS (typical)
- RCD contact break: Double pole
- Latching: Electrical, needs to be reset after power failure (Active)
- Responsive to: Pulsating DC earth faults
- Conforms to: BS 1363-4:1995 Amd 1, 2, 3 and BS 7288:1990 Amd 1

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>H92WPAAN-C</td>
<td>RCD Fused Spur</td>
</tr>
<tr>
<td></td>
<td>Scratch resistant</td>
</tr>
<tr>
<td></td>
<td>urea front plate</td>
</tr>
<tr>
<td></td>
<td>Fits 25mm standard back box</td>
</tr>
<tr>
<td>H92MPAAN-C</td>
<td>RCD Fused Spur</td>
</tr>
<tr>
<td></td>
<td>Complete with metal back box</td>
</tr>
</tbody>
</table>

RCD Plug & Adaptor - 30mA

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J72A-C</td>
<td>RCD Plug</td>
</tr>
<tr>
<td></td>
<td>Single button test/reset operation</td>
</tr>
<tr>
<td></td>
<td>Large easy to see trip indicator</td>
</tr>
<tr>
<td>J02A-C</td>
<td>RCD Adaptor</td>
</tr>
<tr>
<td></td>
<td>Single button test/reset operation</td>
</tr>
<tr>
<td></td>
<td>Large easy to see trip indicator</td>
</tr>
</tbody>
</table>

+44 (0) 1279 772 772

+44 (0) 1279 422 007
RCD In-line - 30mA
Active

- Suitable for BS/European power supply systems
- Robust construction
- Mechanical flag to indicate contact position
- Double pole breaking
- Separate test and reset buttons

Technical Data
- Rated trip current: 30mA
- Typical trip speed: <40mS
- RCD contact break: Double pole
- Latching: Electrical. Needs resetting after power loss (Active)
- Responsive to: Pulsating DC earth faults
- Conforms to: IEC 61540

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>J62-T</td>
<td>In-Line RCD Heavy Duty, IP65 Re-wirable terminals 230V AC 50Hz Max operating current 16A</td>
</tr>
<tr>
<td>J62-Y</td>
<td>In-Line RCD Heavy Duty, IP65 Re-wirable terminals 110V AC 50Hz Max operating current 16A</td>
</tr>
</tbody>
</table>

The J62 provides added personal protection against electrocution when using electrical equipment in adverse conditions, such as building sites, plant applications & industrial manufacturing.
RCD Sockets - Switched 10mA

- Electrical latching - Needs to be reset after power failure
- High intensity LED power on indicator
- Individually switched socket outputs
- Twin sockets fitted with twin earth terminals

Technical Data
- Voltage: 230V AC ~ 50Hz
- Max operating current: 13A (13A inductive)
- Rated trip current: 10mA
- Typical trip speed: Less than 20mS (typical)
- RCD contact break: Double pole
- Latching: Electrical, needs to be reset after power failure (Active)
- Responsive to: Pulsating DC earth faults
- Conforms to: BS 7288:1990, Amd 1 and BS 1363-2:1995 Amd 1-3

<table>
<thead>
<tr>
<th>Part No</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>K21WPAAN10-C</td>
<td>RCD Single Switched Socket</td>
</tr>
<tr>
<td></td>
<td>Slim profile</td>
</tr>
<tr>
<td></td>
<td>Moulded front plate</td>
</tr>
<tr>
<td></td>
<td>Fits standard 25mm back box</td>
</tr>
<tr>
<td>K22WPAAN10-C</td>
<td>RCD Twin Switched Socket</td>
</tr>
<tr>
<td></td>
<td>Slim profile</td>
</tr>
<tr>
<td></td>
<td>Moulded front plate</td>
</tr>
<tr>
<td></td>
<td>Fits standard 25mm back box</td>
</tr>
<tr>
<td>K21MPAAN10-C</td>
<td>RCD Single Switched Socket Complete with metal backbox</td>
</tr>
<tr>
<td>K22MPAAN10-C</td>
<td>RCD Twin Switched Socket Complete with metal backbox</td>
</tr>
</tbody>
</table>
RCD Fused Spurs - 10mA
Active

- Electrical latching - Needs to be reset after power failure
- High intensity LED power on indicator, clear visual indicator of power on
- Mechanical flag trip indicator
- Integral cord outlet and cable clamp
- Fuse holder can be locked out for safety
- Twin earth terminals

Technical Data

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Voltage</td>
<td>230V AC ~ 50Hz</td>
</tr>
<tr>
<td>Max operating current</td>
<td>13A (13A inductive)</td>
</tr>
<tr>
<td>Rated trip current</td>
<td>10mA</td>
</tr>
<tr>
<td>Typical trip speed</td>
<td>Less than 20mS (typical)</td>
</tr>
<tr>
<td>RCD contact break</td>
<td>Double pole</td>
</tr>
<tr>
<td>Latching</td>
<td>Electrical, needs to be reset after power failure (Active)</td>
</tr>
<tr>
<td>Responsive to</td>
<td>Pulsating DC earth faults</td>
</tr>
<tr>
<td>Conforms to</td>
<td>BS 1363-4:1995 Amd 1, 2, 3 and BS 7288:1990 Amd 1</td>
</tr>
</tbody>
</table>

Part No	Description
H92WPAAN10-C	RCD Fused Spur
Scratch resistant	
urea front plate	
Fits 25mm standard back box	

H92MPAAN10-C | RCD Fused Spur
| Complete with metal back box |

‘Super Sensitive – 10mA’

See the main GreenBrook Website www.greenbrook.co.uk for our IP66 Weatherproof Range incorporating ‘PowerBreaker’ RCD technology
Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.

Guidelines in the UK

Here in the UK, there is a growing body of legislation, regulations, codes of practice and recommendations which is accelerating the rate of adoption of RCDs and widening considerably their areas of application. The 17th Wiring Regulations dictates a trend which is clear and cannot be ignored.

Health and Safety at Work Act 1974

The Health and Safety at Work Act 1974 and the Electricity at Work Regulations 1989 are statutory documents and non-compliance constitutes a criminal offence.

Electricity at Work Regulations 1989

Because of the wide range of work covered by the regulations, the requirements are framed in general terms. However, the Memorandum of Guidance on the above regulations, a clear case is made for using RCDs as an additional safeguard for earthing (Reg 8). Also under clause 12 (isolation), it advises that the use of RCDs will meet the provision of isolation.

IET Wiring Regulations 2008 - Amendment 3 = 2015

Although BS 7671 (2008) (Otherwise known as the 17th Edition IET Wiring Regulations) is a guidance document in the event of an accident, failure to comply could result in prosecution by the HSE. The HSE also accepts that compliance with BS 7671 also gives compliance with The Electricity at Work Regulations 1989.
Health & Safety Executive
Where greater guidance is deemed necessary, the HSE issue notes to assist. The following are relevant but not comprehensive:

a) GS 50 (2014) - It is recommended that sockets being used by entertainers be RCD protected.
b) PM 32 (Nov 1990) - Safe Use of Portable Electrical Apparatus allows the use of RCD protection for portable electrical apparatus.
c) HSG 261 (2009) - Health and safety in motor vehicle repair and associated industries*.

Sockets for equipment in wet or damp environments must be protected by a residual current device (RCD) of 30 mA/0 ms specification or an earth-monitoring device in the electrical supply to the device. The RCD must be trip-tested at appropriate intervals.

d) HSG220 (2014) - Health and Safety in Care Homes* - Calls for outdoor portable equipment to be protected by RCDs.
e) HS(G) 55 (1991) - Health and Safety in Kitchens and Food Preparation Areas* - Calls for RCD protection for pressure washing units and steam cleaners.
f) HSE PM 29 (1995) - Electrical Risks from Steam/Water Pressure Cleaners* - Calls for portable equipment to be protected by an RCD.
g) HS(G) 41 - Petrol Filling Stations* - Calls for RCD protection for fuel pumps and filling stations.
h) HSG 261 (2009) - Health and Safety in Motor Vehicle Repair and associated industries* - Calls for RCD protection of power operated pedestrian door systems.
i) HSE PM 29 (1995) - Electrical Risks from Steam/Water Pressure Cleaners* - Calls for outdoor portable equipment to be protected by RCDs.
j) HS(G) 55 (1991) - Health and Safety in Kitchens and Food Preparation Areas* - Calls for RCD protection for pressure washing units and steam cleaners.
k) PM 32 (Nov 1990) - Safe Use of Portable Electrical Apparatus allows the use of RCD protection for portable electrical apparatus.

Brewers Society - guidance for licensees
While the guidance refers the reader to compliance with the Electricity at Work Regulations, it is relevant to point out that parts of licensed premises are areas of increased risk and reference should be made to BS 7671 (17th Edition), Regulation 411. The HSE document GS 50 may also be relevant.

Consumer Safety Unit
Business Innovation & Skills recognise that RCDs are an essential contribution to home safety. In previous consumer research with RCDs, it was established that 200 hospital related injuries and 25 deaths each year were caused by electrical currents. Combine this with the 5,000 fires that are started due to electrical fault, resulting in 20 deaths and 500 casualties, and the new regulations demonstrate the full potential of RCD protection.

IET Codes of practice for in-service inspections and testing of electrical equipment
The length of extension leads should not exceed the following:

- Extension leads exceeding the above lengths should be fitted with a 30mA RCD manufactured to BS 7071.

<table>
<thead>
<tr>
<th>Core area</th>
<th>Maximum length</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.25mm²</td>
<td>12 metres</td>
</tr>
<tr>
<td>1.5mm²</td>
<td>15 metres</td>
</tr>
<tr>
<td>2.5mm²</td>
<td>25 metres</td>
</tr>
</tbody>
</table>

Cable reels must be used within their reeled or unreeled ratings as appropriate.

Product Liability
Manufacturers are required to ensure that their products are virtually foolproof to install and use. This takes particularly strong demands on electrical equipment manufacturers.

Most electrical accidents are caused by damaged or worn cables, or loose connections, and many electric appliances are now double-insulated, giving a limited degree of protection. The careless use of some equipment, such as lawn mowers, hedge trimmers and power tools, however, can result in damage to their own cables. Appliances using water as a cleaning medium (e.g. floor scrubbers, washing machines and dish washers) can become live as a result of water spillage or leaks.

The increase in product liability legislation has already convinced some manufacturers to fit RCDs to their equipment as standard, or to offer them as accessories. This practice is likely to grow and companies which ignore the trend will do so at risk to the future of their business.

Conclusion
The use of RCDs in the UK is already widespread and is set to increase as installations are refurbished and designed to comply with the 17th Wiring Regulations and other relevant legislation. Having foreseen these trends some years ago, GreenBrook Electrical has developed new generation technology to secure its position as the leading UK supplier of RCDs. Not only does GreenBrook Electrical have a comprehensive range of RCDs, but several items present unique and innovative solutions to satisfy the users requirements.

Manufactured to the highest standards and approved by the British Standards Institute, PowerBreaker® RCDs are designed for long, reliable life. Supported by a nationwide network of electrical wholesalers and unparalleled marketing programmes, these top quality products satisfy the needs of virtually every type of application.

In its commitment to the highest levels of customer service and user safety, GreenBrook Electrical continues to provide specialist advice regarding the installation and application of RCDs across the broad spectrum of industrial, commercial and domestic installations.

sales@greenbrook.co.uk
www.powerbreaker.co.uk
The 17th edition RCD Regulations

Regulation 415.1 - Additional Protection by RCD
If an RCD is used to provide additional protection, the RCD must have a rated residual operating current not exceeding 30mA, and an operating time not exceeding 40mS at 5 times the rated current.

Regulation 411.3.3 - Socket Outlets
The socket outlets up to 20A and the mobile equipment up to 32A for use outdoors in all types of installations, including commercial, domestic and industrial, will need to be protected by 30mA RCD, in accordance with Regulation 415.1 unless risk assessment can determine that it is not necessary.

Regulation 701.411.3.3 - Locations containing a bath or shower
It requires all low voltage circuits serving and all low voltage passing through zones 1 and 2 not serving the location to be RCD protected.

Regulation 522.6.202 & 522.6.203 - Cable concealed in walls or partitions
It is required that cables that are concealed in a wall or partition (at a depth of less than 50mm) are protected by a 30mA RCD for all installations if other methods of protection, including the use of cables with either an earthed metallic covering or mechanical protection, are not employed.

Irrespective of the depth of buried cable, a cable concealed in a wall or partition, the internal construction of which includes metallic parts, other than metallic fixings such as nails/screws shall be provided with additional protection of RCD.

PowerBreaker Certification

All GreenBrook PowerBreaker RCDs are certified by the INDEPENDENT UK TEST HOUSE (NEMKO LTD) to comply to all the latest standards.

‘Have gone above and beyond the necessary standards ensuring your safety is our only priority’